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Hypothèse

Dans tout ce chapitre, I est un intervalle de R non vide et non réduit à un point.

1 Généralités

1.1 Définition

Lemme 16.1 – Barycentre de deux points

Soit x,y ∈ I tels que x ≤ y. On a : [
x,y
]
=
{

αx+(1−α)y
∣∣ α ∈

[
0,1
]}

Dit autrement, si on note uα := αx+(1−α)y, le point uα parcourt le segment
[
x,y
]

lorsque α parcourt
[
0,1
]

:

Joli
Dessin
avec u0 = y
et u1 = x
Le point uα est appelé barycentre des points (x,y) pondéré par les poids (α,1−α) (notion techniquement
hors-programme).
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Convexité

Définition 16.2 – Fonction convexe

Soit f : I → R une fonction. On dit que f est convexe sur I si

∀x,y ∈ I ∀α ∈
[
0,1
]

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)

ou encore, ce qui est équivalent,

∀x,y ∈ I ∀α ∈
]
0,1
[

x < y =⇒ f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)

Si on note uα = αx+(1−α)y, cela revient donc à dire que f (uα)≤ α f (x)+(1−α) f (y).
Justifions cette équivalence. Il est clair que la première définition ci-dessus entraine la seconde. Montrons le sens
réciproque. Soit x,y ∈ I et α ∈

[
0,1
]

. Posons P(x,y,α) l’assertion suivante :

P(x,y,α) : f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)

et supposons que P(x,y,α) est vraie lorsque x < y et 0 < α < 1.

• Tout d’abord, P(x,y,α) est trivialement vraie lorsque α = 0, α = 1 ou x = y. Ainsi, P(x,y,α) est vraie
lorsque x ≤ y et 0 ≤ α ≤ 1.

• Il reste à montrer P(x,y,α) lorsque x > y (et 0 ≤ α ≤ 1). Or, comme y < x, on en déduit que P(y,x,1−α)
est vraie. De plus, comme 1− (1−α) = α , on en déduit :

P(y,x,1−α) ⇐⇒ f ((1−α)y+αx)≤ (1−α) f (y)+α f (x)

⇐⇒ f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)

⇐⇒ P(x,y,α)

Ainsi, P(x,y,α) est vraie également dans le cas x > y. Les deux définitions données sont bien équivalentes.

1.2 Inteprétation de la convexité via les cordes

Définition 16.3

Soit f : I → R une fonction. On appelle corde de C f tout segment qui relie deux points distincts de la
courbe C f .

Dit autrement, pour tous x,y ∈ I distincts, si on note A le point de coordonnées (x, f (x)) et B le point de
coordonéees (y, f (y)), alors le segment

[
AB
]

est une corde de C f .

Joli
Dessin
ff
ff

Remarque. On suppose x < y. La corde qui relie (x, f (x)) à (y, f (y)) est une droite : c’est donc la représentation
graphique d’une fonction affine. On pose g la fonction :

g :
[
x,y
]
→ R

t 7→ f (y)− f (x)
y− x

(t − x)+ f (x)
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Convexité

On vérifie que g est une fonction affine, g(x) = f (x) et g(y) = f (y). Ainsi la courbe Cg correspond à la corde qui

relie (x, f (x)) à (y, f (y)). On notera que la pente de cette corde est donc
f (y)− f (x)

y− x
.

Théorème 16.4 – Position par rapport aux cordes

Une fonction f est convexe si et seulement si sa courbe C f est en-dessous de toute corde qui relie deux de
ses points.

Démonstration. Soit x,y ∈ I tels que x < y. Par arbitraire sur x et y, il suffit de montrer que l’assertion

P(x,y) : ∀α ∈
[
0,1
]

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)

équivaut à l’assertion

Q(x,y) : “C f est en-dessous de la corde qui relie (x, f (x)) à (y, f (y))”

Or, avec g la fonction de la remarque ci-dessus, l’assertion Q(x,y) se réécrit :

Q(x,y) : ∀t ∈
[
x,y
]

f (t)≤ g(t)

ou encore, par le Lemme 16.1, et en posant uα = αx+(1−α)y

Q(x,y) : ∀α ∈
[
0,1
]

f (uα)≤ g(uα)

Cependant, on a f (uα) = f (αx+(1−α)y) tandis que :

g(uα) = g(αx+(1−α)y)

=
f (y)− f (x)

y− x
[αx+(1−α)y− x]+ f (x)

=
f (y)− f (x)

y− x
[(1−α)(y− x)]+ f (x)

= ( f (y)− f (x))(1−α)+ f (x)
= α f (x)+(1−α) f (y)

On remarque alors que

Q(x,y) ⇐⇒ ∀α ∈
[
0,1
]

f (uα)≤ g(uα)

⇐⇒ ∀α ∈
[
0,1
]

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)

⇐⇒ P(x,y)

D’où le résultat.

Exemple 1. Pour démontrer ces exemples, on se contente de la représentation graphique pour le moment :

◦ Les fonctions suivantes sont convexes : x 7→ x2 ; x 7→ ex et x 7→ e−x.

◦ La fonction x 7→ −x2 n’est pas convexe.
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Exemple 2. Montrer que la fonction f : x 7→ |x| est convexe (sur R).

Soit x,y ∈ R et α ∈
[
0,1
]

. Par inégalité triangulaire :

f (αx+(1−α)y) = |αx+(1−α)y|
≤ |αx|+ |(1−α)y|= α f (x)+(1−α) f (y) car 0 ≤ α ≤ 1

Ainsi, f est convexe.

1.3 Fonction concave

Définition 16.5 – Fonction concave

Soit f : I → R une fonction. On dit que f est concave si − f est convexe, c’est-à-dire :

∀x,y ∈ I ∀α ∈
[
0,1
]

f (αx+(1−α)y)≥ α f (x)+(1−α) f (y)

Théorème 16.6

Une fonction f est concave si et seulement si sa courbe C f est au-dessus de toute corde qui relie deux de
ses points.

Exemple 3. On prouve ces exemples grâce à la représentation graphique pour le moment :

◦ Les fonctions x 7→ −x2 et x 7→ lnx sont concaves.

◦ Toute fonction affine (en particulier toute fonction constante) est convexe et concave.

◦ La fonction x 7→ x3 n’est ni convexe, ni concave.
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1.4 Inégalité de Jensen

Lemme 16.7 – Barycentre de n points

Soit n ∈ N∗ et α1, · · · ,αn ∈ R+ tels que
n

∑
i=1

αi = 1. Soit enfin x1, · · · ,xn ∈ I. Alors

n

∑
i=1

αixi ∈
[

min(x1, · · · ,xn) , max(x1, · · · ,xn)
]

En particulier,
n

∑
i=1

αixi ∈ I.

Démonstration. On pose m = min(x1, · · · ,xn) et M = max(x1, · · · ,xn). Montrons que m ≤
n

∑
i=1

αixi ≤ M. Il est clair

que pour tout i ∈ J1,nK,

m ≤ xi ≤ M donc αim ≤ αixi ≤ αiM

On somme la dernière inégalité pour i allant de 1 à n :

m
n

∑
i=1

αi ≤
n

∑
i=1

αixi ≤ M
n

∑
i=1

αi

Comme
n

∑
i=1

αi = 1, on en déduit que m ≤
n

∑
i=1

αixi ≤ M.

Le point
n

∑
i=1

αixi est appelé le barycentre des points (xi)1≤i≤n, pondérés par les poids (αi)1≤i≤n (hors-programme).

Théorème 16.8 – Inégalité de Jensen

Soit n ∈ N∗ et x1, · · · ,xn ∈ I. Soit α1, · · · ,αn ∈ R+ tels que
n

∑
i=1

αi = 1.

• Si f : I → R est convexe, alors

f

(
n

∑
i=1

αixi

)
≤

n

∑
i=1

αi f (xi)

• Si f : I → R est concave, alors

f

(
n

∑
i=1

αixi

)
≥

n

∑
i=1

αi f (xi)

Attention à bien vérifier que les α1, · · · ,αn soient tous positifs et que leur somme fasse 1. Cette inégalité est très

souvent utilisée en prenant α1 = α2 = . . .= αn =
1
n

, auquel cas la conclusion est :

f

(
1
n

n

∑
i=1

xi

) (
≥
≤

)
1
n

n

∑
i=1

f (xi)
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La formule pour une fonction concave f se déduit en appliquant la première formule à la fonction convexe
− f , puis à multiplier par −1, ce qui change le sens de l’inégalité. Plus généralement, les propriétés qui suivent
des fonctions convexes ont leur équivalent pour les fonctions concaves en changeant le sens des inégalités où
intervient f .

Exemple 4. Soit n ∈ N∗ et x1, · · · ,xn > 0. Montrer que

n

√
n

∏
k=1

xk ≤
1
n

n

∑
k=1

xk

(C’est sans doute Jensen mais appliqué à quelle fonction ? Il y a deux symboles ∑
dans Jensen. Il faudrait transformer le ∏ en ∑. Comment ? Par ln !) On a :

n

√
n

∏
k=1

xk ≤
1
n

n

∑
k=1

xk ⇐⇒ 1
n

n

∑
k=1

lnxk ≤ ln

(
1
n

n

∑
k=1

xk

)
par croissance de ln

Il suffit donc de montrer cette dernière inégalité. Or la fonction ln est concave. Par

l’inégalité de Jensen (avec α1 = α2 = . . .= αn =
1
n

),

1
n

n

∑
k=1

lnxk ≤ ln

(
1
n

n

∑
k=1

xk

)
ce qui conduit au résultat voulu.
Exemple 5. Soit n ∈ N∗ et x1, · · · ,xn > 0. Montrer que

n

∑
n
k=1

1
xk

≤ n

√
n

∏
k=1

xk

n

∑
n
k=1

1
xk

≤ n

√
n

∏
k=1

xk

⇐⇒ lnn− ln

(
n

∑
k=1

1
xk

)
≤ 1

n

n

∑
k=1

lnxk car ln est croissante

⇐⇒ lnn− ln

(
n× 1

n

n

∑
k=1

1
xk

)
≤ 1

n

n

∑
k=1

lnxk

⇐⇒ − ln

(
1
n

n

∑
k=1

1
xk

)
≤ 1

n

n

∑
k=1

lnxk

⇐⇒ ln

(
1
n

n

∑
k=1

1
xk

)
≥ 1

n

n

∑
k=1

(− lnxk)

⇐⇒ ln

(
1
n

n

∑
k=1

1
xk

)
≥ 1

n

n

∑
k=1

ln
1
xk
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Or la fonction ln est concave. Par l’inégalité de Jensen appliqué aux points
1
x1
, · · · , 1

xn

(avec α1 = α2 = . . .= αn =
1
n

), on a bien :

1
n

n

∑
k=1

ln
1
xk

≤ ln

(
1
n

n

∑
k=1

1
xk

)
ce qui conduit au résultat voulu.

1.5 Caractérisation par l’inégalité des pentes

Théorème 16.9 – Inégalité des pentes

Soit f : I → R une fonction

• f est convexe si et seulement si pour tous x,y,z ∈ I,

x < y < z =⇒ f (y)− f (x)
y− x

≤ f (z)− f (x)
z− x

≤ f (z)− f (y)
z− y

• Si f est concave si et seulement si pour tous x,y,z ∈ I,

x < y < z =⇒ f (y)− f (x)
y− x

≥ f (z)− f (x)
z− x

≥ f (z)− f (y)
z− y

JO
LI
DE
SS
IN
! !
! !

Démonstration. On ne fait la preuve que pour f convexe. Seule la preuve du sens direct est au programme.

Soit x,y,z ∈ I tels que x < y < z. Montrons que
f (y)− f (x)

y− x
≤ f (z)− f (x)

z− x
, la seconde

inégalité se montrant de manière similaire. Comme y ∈
]
x,z
[
, il existe α ∈

]
0,1
[

tel
que y = αx+(1−α)z. Or, comme f est convexe,

f (y) = f (αx+(1−α)z)≤ α f (x)+(1−α) f (z)

Ainsi,
f (y)− f (x)≤ (1−α)( f (z)− f (x))

d’où, comme y− x > 0, on a

f (y)− f (x)
y− x

≤ (1−α)
f (z)− f (x)

y− x
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Or, on remarque que

y− x = αx+(1−α)z− x = (1−α)(z− x)

de sorte que l’inégalité devienne

f (y)− f (x)
y− x

≤ f (z)− f (x)
z− x

Remarque. En réalité, pour le sens réciproque, il est suffisant de vérifier une seule des inégalités. Par exemple :(
∀x,y,z ∈ I x < y < z =⇒ f (y)− f (x)

y− x
≤ f (z)− f (x)

z− x

)
=⇒ f est convexe

Pour le prouver, on peut procéder comme pour la preuve du sens réciproque du Théorème 16.11, cf plus loin.

1.6 Caractérisation par le taux d’accroissement

Rappel : pour tout a ∈ I, le taux d’accroissement de f en a, est l’application qu’on notera :

τa : I \{a}→ R

x 7→ f (x)− f (a)
x−a

Corollaire 16.10

Soit f : I → R une fonction.

• f est convexe si et seulement si pour tout a ∈ I, τa est croissante (sur I \{a}).

• f est concave si et seulement si pour tout a ∈ I, τa est décroissante (sur I \{a}).

Démonstration. On ne prouve que le premier point. Par ce qui précède, il suffit de montrer que f vérifie l’inégalité
des pentes (pour une fonction convexe) si et seulement si pour tout a ∈ I, τa est croissante.

• Supposons que τa est croissante pour tout a ∈ I. Alors pour tous x,y,z ∈ I

x < y < z =⇒ τx(y)≤ τx(z)

=⇒ f (y)− f (x)
y− x

≤ f (z)− f (x)
z− x

et donc f vérifie une des inégalités des pentes pour une fonction convexe donc est convexe (cf Remarque
après le Théorème 16.9).

• Réciproquement, supposons f convexe, et montrons que pour tout a ∈ I, τa est croissante. Soit x,y ∈ I \{a}
avec x < y. Montrons que τa(x)≤ τa(y). On distingue 3 cas :

– Si a < x < y, alors par l’inégalité des pentes,

f (x)− f (a)
x−a

≤ f (y)− f (a)
y−a

=⇒ τa(x)≤ τa(y)
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– Si x < a < y, alors par l’inégalité des pentes,

f (a)− f (x)
a− x

≤ f (y)− f (a)
y−a

=⇒ τa(x)≤ τa(y)

– Si x < y < a, alors par l’inégalité des pentes,

f (a)− f (x)
a− x

≤ f (a)− f (y)
a− y

=⇒ τa(x)≤ τa(y)

Par arbitraire sur x et y, la fonction τa est donc croissante.

2 Convexité et dérivabilité

2.1 Caractérisation par la dérivée

Théorème 16.11 – Convexité et dérivée première

Soit f : I → R une fonction dérivable.

• f est convexe si et seulement si f ′ est croissante.

• f est concave si et seulement si f ′ est décroissante.

Démonstration. On ne prouve que le premier point, en procédant par double implication.

Sens direct : supposons que f est convexe. Soit x,z ∈ I tels que x < z. Montrons que f ′(x)≤ f ′(z). Soit y un point
quelconque de

]
x,z
[

. Comme f est convexe, on déduit de l’inégalité des pentes :

f (y)− f (x)
y− x

≤ f (z)− f (x)
z− x

Comme f est dérivable en x, on peut passer à la limite quand y tend vers x (en laissant x,z fixés). On obtient

f ′(x)≤ f (z)− f (x)
z− x

. Or, par l’inégalité des pentes, on a aussi

f (z)− f (x)
z− x

≤ f (z)− f (y)
z− y

Et en passant à la limite quand y tend vers z (en laissant x,z fixés), on obtient
f (z)− f (x)

z− x
≤ f ′(z). Ainsi,

f ′(x)≤ f (z)− f (x)
z− x

≤ f ′(z) donc f ′(x)≤ f ′(z)

Par arbitraire sur x,z, on en déduit que f ′ est croissante.

Sens réciproque : supposons que f ′ est croissante. Soit α ∈
]
0,1
[

et x,y ∈ I tels que
x < y. On pose u = αx+(1−α)y ∈

]
x,y
[

. Par le théorème des accroissements finis, il
existe c1 ∈

]
x,u
[

et c2 ∈
]
u,y
[

tels que

f (u)− f (x)
u− x

= f ′(c1)
f (y)− f (u)

y−u
= f ′(c2)
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Or, f ′ est croissante. Comme c1 < u < c2, on en déduit que f ′(c1)≤ f ′(c2), i.e.

f (u)− f (x)
u− x

≤ f (y)− f (u)
y−u

On multiplie par u− x > 0, si bien que

f (u)− f (x)≤ u− x
y−u

( f (y)− f (u))

Or,
u− x
y−u

=
αx+(1−α)y− x
y−αx− (1−α)y

=
(1−α)(y− x)

α(y− x)
=

1−α

α

On obtient donc

f (u)− f (x)≤ 1−α

α
( f (y)− f (u))

=⇒ α f (u)−α f (x)≤ (1−α) f (y)− (1−α) f (u)
=⇒ α f (u)+(1−α) f (u)≤ α f (x)+(1−α) f (y)
=⇒ f (u)≤ α f (x)+(1−α) f (y)
=⇒ f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)

Par arbitraire sur x,y,α , on en déduit que f est convexe.

Remarque. La preuve du sens direct ci-dessus montre en particulier que si f est convexe et dérivable, alors

∀x,z ∈ I x < z =⇒
(

f ′(x)≤ f (z)− f (x)
z− x

≤ f ′(z)
)

Corollaire 16.12

Soit f : I → R une fonction deux fois dérivable.

• f est convexe si et seulement si f ′′ ≥ 0.

• f est concave si et seulement si f ′′ ≤ 0.

Ceci permet de justifier facilement les Exemples 1 et 3.

2.2 Position par rapport à la tangente

Théorème 16.13

Soit f : I → R une fonction dérivable.

• Si f est convexe, alors pour tout a ∈ I, la courbe C f est au-dessus de sa tangente en a :

∀x ∈ I f (x)≥ f ′(a)(x−a)+ f (a)

• Si f est concave, alors pour tout a ∈ I, la courbe C f est en-dessous de sa tangente en a :

∀x ∈ I f (x)≤ f ′(a)(x−a)+ f (a)

10 / 12 G. Peltier



Convexité

Démonstration. On ne prouve que le premier point. Soit a ∈ I.

• Soit x > a. comme f est convexe et dérivable sur
[
a,x
]

, par la Remarque sous la preuve du Théorème 16.11,
on en déduit que

f (x)− f (a)
x−a

≥ f ′(a) ou encore f (x)≥ f ′(a)(x−a)+ f (a)

• Soit x < a. De même en appliquant la Remarque sur
[
x,a
]

, on en déduit que

f (a)− f (x)
a− x

≤ f ′(a) ou encore f (x)≥ f ′(a)(x−a)+ f (a)

Dans tous les cas, on a donc l’inégalité voulue.

Exemple 6. Montrer que pour tout x ∈ R, on a ex ≥ 1+ x.

La fonction exp est convexe car pour tout x ∈R, exp′′(x) = ex ≥ 0. De plus, sa tangente
en 0 a pour équation

y = e0(x−0)+ e0 = x+1

Ainsi, pour tout x ∈ R, on a ex ≥ 1+ x.

3 Sécante

Définition 16.14

Soit f : I → R une fonction. On appelle sécante de C f toute droite qui passe par deux points distincts de
C f .

Dit autrement, pour tous a,b ∈ I distincts, si on note A le point de coordonnées (a, f (a)) et B le point de
coordonéees (b, f (b)), alors la droite (AB) est une sécante de C f .

Théorème 16.15

Soit f : I → R une fonction convexe et a,b ∈ I avec a < b.

• Sur
[
a,b
]

, la courbe C f est en-dessous de la sécante (AB).

• Sur
]
−∞,a

]
∪
[
b,+∞

[
, la courbe C f est au-dessus de la sécante (AB).

Jo
li
de
ss
in
Le premier point est un résultat déjà connu car, sur

[
a,b
]

, la sécante (AB) coïncide avec la corde
[
AB
]

.
Bien entendu, ce résultat s’adapte aux fonctions concaves : si f est concave, la courbe C f est au-dessus de la
sécante (AB) sur

[
a,b
]

, mais en-dessous de la sécante (AB) sur
]
−∞,a

]
∪
[
b,+∞

[
.

G. Peltier 11 / 12



Convexité

4 Méthodes pour les exercices

Les méthodes sont présentées dans le cas d’une fonction convexe, mais s’adaptent au cas d’une fonction concave.

Méthode

Pour montrer qu’une fonction f est convexe, on peut :

• Si f est deux fois dérivable, montrer que f ′′ est positive.

• Si f est dérivable, montrer que f ′ est croissante.

• Sinon, utiliser la définition.

Fausse Bonne Idée : éviter de montrer que τa est croissante ou que f vérifie l’inégalité des pentes.

Méthode

Pour montrer des inégalités du type f (x) et une expression affine αx+β :

• Si l’inégalité est de la forme f (x) ≥ αx+ β avec f convexe, on peut regarder si y = αx+ β est
l’équation d’une tangente de C f .

• Si l’inégalité est de la forme f (x) ≤ αx+ β avec f convexe, on peut regarder si y = αx+ β est
l’équation d’une corde de C f , notamment si cette inégalité n’est demandée que pour tout x dans un
segment

[
a,b
]

.

Le second point peut également s’adapter pour une inégalité du type f (x) ≥ αx+β en dehors du segement[
a,b
]

, au moyen d’une sécante, mais son cas d’utilisation est plus rare.

Méthode

Pour montrer une inégalité faisant intervenir n points x1, · · · ,xn, il faut le plus souvent utiliser l’inégalité
de Jensen. Le plus difficile est de trouver la bonne fonction f et les points y1, · · · ,yn en lesquels il faut

l’appliquer. On peut avoir yk ̸= xk, par exemple yk =
1
xk

comme à l’Exemple 5 !

Conseil : partir de l’inégalité à montrer et raisonner par équivalences / réécritures jusqu’à reconnaitre un

terme de la forme f

(
1
n

n

∑
k=1

yk

)
et/ou

1
n

n

∑
k=1

f (yk), ce qui nous guide vers la bonne fonction f ou les bons

réels y1, · · · ,yn.
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