Chapitre 16
Convexité
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Hypothese

Dans tout ce chapitre, / est un intervalle de R non vide et non réduit a un point.

1 Généralités

1.1 Définition

Lemme 16.1 - Barycentre de deux points

Soitx,y € Itelsquex <y.Ona:

[x,y] = {ax+(1—a)y|a€ [O,l]}

Dit autrement, si on note uy := ox+ (1 — @)y, le point u, parcourt le segment [x, y} lorsque o parcourt [0, 1] :

Le point u, est appelé barycentre des points (x,y) pondéré par les poids (¢, 1 — @) (notion techniquement
hors-programme).
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Convexité

| Définition 16.2 — Fonction convexe |

Soit f : I — R une fonction. On dit que f est convexe sur / si
veyel  Vae[0,1]  flax+(1—-a)y) <af(x)+(1-a)f(y)

ou encore, ce qui est équivalent,

Voyel Vaelol[ x<y= f(oax+(l-a)y)<af(x)+(1-a)f()

Si on note uy = ox+ (1 — )y, cela revient donc a dire que f(ug) < af(x)+ (1 — o) f(y).
Justifions cette équivalence. Il est clair que la premiere définition ci-dessus entraine la seconde. Montrons le sens
réciproque. Soitx,y € I et o € [0, 1] . Posons P(x,y, &) I'assertion suivante :

Px,y,a):  flox+(1—-a)y) <af(x)+(1-a)f(y)

et supposons que P(x,y, &) est vraie lorsque x < yet0 < o < 1.

e Tout d’abord, P(x,y, &) est trivialement vraie lorsque & = 0, @ = 1 ou x = y. Ainsi, P(x,y, ) est vraie
lorsquex <yet0 < a < 1.

e Il reste a montrer P(x,y, &) lorsque x >y (et 0 < a < 1). Or, comme y < x, on en déduit que P(y,x,1 — a)
est vraie. De plus, comme 1 — (1 — o) = &, on en déduit :

P(y,x,1—a) < f((1—a)y+ ox)
— f(ox+(1—0a)y)
< P(x,y,a)

(1—a)f(y) +of(x)
af(x)+(1—a)f(y)

<
<

Ainsi, P(x,y, o) est vraie également dans le cas x > y. Les deux définitions données sont bien équivalentes.

1.2 Inteprétation de la convexité via les cordes

| Définition 16.3 |

Soit f : I — R une fonction. On appelle corde de ¢ tout segment qui relie deux points distincts de la
courbe %7.

Dit autrement, pour tous x,y € I distincts, si on note A le point de coordonnées (x, f(x)) et B le point de
coordonéees (y, f(y)), alors le segment [AB] est une corde de %.

Remarque. On suppose x < y. La corde qui relie (x, f(x)) a (y, f(y)) est une droite : c’est donc la représentation
graphique d'une fonction affine. On pose g la fonction :

g: [x,y] —R
() =)

t'—)f
y—x

(t =x) + f(x)
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Convexité

On vérifie que g est une fonction affine, g(x) = f(x) et g(y) = f(y). Ainsi la courbe €, correspond a la corde qui
)= fx)

relie (x, f(x)) a (y, f(y)). On notera que la pente de cette corde est donc
y—x

Théoréme 16.4 — Position par rapport aux cordes

Une fonction f est convexe si et seulement si sa courbe ¢ est en-dessous de toute corde qui relie deux de
ses points.

Démonstration. Soit x,y € I tels que x < y. Par arbitraire sur x et y, il suffit de montrer que 'assertion
P(x,y): Yae[01]  flax+(1—a)y) <af(x)+(1-a)f()
équivaut a I'assertion
Q(x,y): “€r esten-dessous de la corde qui relie (x, f(x)) a (v, f(v))”
Or, avec g la fonction de la remarque ci-dessus, I'assertion Q(x,y) se réécrit :
O(x,y): Vre[xy] f(t)<glt)

ou encore, par le Lemme 16.1, et en posant uy = ax+ (1 —a)y
Q(xay) : Vae [07 1] f(M(X) S g(Ma)

Cependant, on a f(ug) = f (ax+ (1 — a)y) tandis que :

On remarque alors que

O(x,y) <= Va e [0,1] fua) < g(ua)
= Vae[0,1] flox+(1-a)y)<af@x)+(1-a)f(y)
< P(x,y)

D’ou1 le résultat. O

Exemple 1. Pour démontrer ces exemples, on se contente de la représentation graphique pour le moment :

o Les fonctions suivantes sont convexes: x+— x> ; x+>e° et x+se ~

2

o Lafonction x — —x~ n’est pas convexe.
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Convexité

Exemple 2. Montrer que la fonction f : x — |x| est convexe (sur R).

1.3 Fonction concave

| Définition 16.5 — Fonction concave |

Soit f : I — R une fonction. On dit que f est concave si — f est convexe, c’est-a-dire :

Veyel Vae[0,1]  flox+(1—a)y)>af(x)+(1—a)f©)

Théoréme 16.6 |

Une fonction f est concave si et seulement si sa courbe 6+ est au-dessus de toute corde qui relie deux de
ses points.

Exemple 3. On prouve ces exemples grace a la représentation graphique pour le moment :
o Lesfonctions x+— —x> et x+~—Inx sontconcaves.
o Toute fonction affine (en particulier toute fonction constante) est convexe et concave.

o La fonction x — x> n’est ni convexe, ni concave.
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Convexité

1.4 Inégalité de Jensen

Lemme 16.7 — Barycentre de n points

n
Soitn € Netoy, -+, 0, € Ry telsqueZai: 1. Soit enfin x1, - -- ,x, € I. Alors

i=1

n

Z ox; € [min(xl,--- Xn) o, max(xp,--c,xp)

i=1

n
En particulier, Z o;x; € 1.
i=1
n
Démonstration. On pose m = min(xy,---,x,) et M = max(x,- - ,x,). Montrons que m < Z o;x; < M. 1l est clair
i=1

que pour tout i € [1,n],

m<x;, <M donc om < ox; < oM

On somme la derniére inégalité pouri allantde 1 an:
n n n
mZOCl- < Z(Xix,' SMZ(X,‘
i=1 i=1 i=1

n n
Comme Z o; = 1, on en déduit que m < Z ox; <M. O
i=1 i=1

n
Le point Z o;x; est appelé le barycentre des points (x;)1<;j<,, pondérés par les poids (@;) | <;<, (hors-programme).
i=1

Théoréeme 16.8 — Inégalité de Jensen

n
Soitn € N* etxy, -+ ,x, € . Soit ay,--- , 00, € Ry telsqueZa,-z 1.

i=1

e Si f: I — R est convexe, alors
n n
f (Z aixi> <Y aif(x)
i=1 i=1

e Si f: I — R estconcave, alors

f (ii (Xixi> > iiaif(xi)

Attention a bien vérifier que les o, - - - , &, soient tous positifs et que leur somme fasse 1. Cette inégalité est tres

souvent utilisée en prenant a; = op = ... = o, = —, auquel cas la conclusion est :
n

(5

IN IV
~——
S| =
-
=
=
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Convexité

La formule pour une fonction concave f se déduit en appliquant la premiere formule a la fonction convexe
—f, puis a multiplier par —1, ce qui change le sens de I'inégalité. Plus généralement, les propriétés qui suivent
des fonctions convexes ont leur équivalent pour les fonctions concaves en changeant le sens des inégalités ol
intervient f.

Exemple 4. Soitn € N* etxy,---,x, > 0. Montrer que

Exemple 5. Soitn € N* etxy,---,x, > 0. Montrer que




1.5 Caractérisation par I'inégalité des pentes

Théoreme 16.9 - Inégalité des pentes

Soit f : I — R une fonction
e f est convexe si et seulement si pour tous x,y,z € I,

fO) =f) _ f@)=f) _ f(2)=f)
y—x o Z Z

x<y<z —

e Si f est concave si et seulement si pour tous x,y,z € I,

JO)—fx)
y—x

>

x<y<z—

Démonstration. On ne fait la preuve que pour f convexe. Seule la preuve du sens direct est au programme.



Remarque. En réalité, pour le sens réciproque, il est suffisant de vérifier une seule des inégalités. Par exemple :

0) =16 _ &) =10

y—Xx Z—Xx

(VX,y,ZEI x<y<z = - > —> f est convexe

Pour le prouver, on peut procéder comme pour la preuve du sens réciproque du Théoréme 16.11, cf plus loin.

1.6 Caractérisation par le taux d’accroissement
Rappel : pour tout a € I, le taux d’accroissement de f en a, est 'application qu’on notera :

T, I\ {a} = R
(x) = f(a)

xl—)f
X—a

| Corollaire 16.10 |

Soit f : I — R une fonction.
e f est convexe si et seulement si pour tout a € I, 7, est croissante (sur / \ {a}).

e f est concave si et seulement si pour tout a € I, 7, est décroissante (sur/\ {a}).

Démonstration. On ne prouve que le premier point. Par ce qui précede, il suffit de montrer que f vérifie I'inégalité
des pentes (pour une fonction convexe) si et seulement si pour tout a € I, 7, est croissante.

e Supposons que T, est croissante pour tout a € I. Alors pour tous x,y,z € [

x<y<z= T(y) <12
. f(yi:){(X) SJ‘(Zi:)}c”()C)

et donc f vérifie une des inégalités des pentes pour une fonction convexe donc est convexe (cf Remarque
apres le Théoreme 16.9).

e Réciproquement, supposons f convexe, et montrons que pour touta € I, 7, est croissante. Soitx,y € I'\ {a}
avec x < y. Montrons que 7,(x) < 7,(y). On distingue 3 cas:

- Sia < x <y, alors par I'inégalité des pentes,

f)

X

Q

<
|

Q
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Convexité

- Six < a <y, alors par I'inégalité des pentes,

f@) = F() _ f0) = f(a)

a—x B y—a

- Six <y < a, alors par I'inégalité des pentes,

fl@)~ () _ fa)~F()

a—x B a—y

Par arbitraire sur x et y, la fonction 7, est donc croissante.

2 Convexité et dérivabilité

2.1 Caractérisation par la dérivée

Théoréme 16.11 — Convexité et dérivée premiere

Soit f : I — R une fonction dérivable.
e f est convexe si et seulement si f’ est croissante.

e f est concave si et seulement si f’ est décroissante.

Démonstration. On ne prouve que le premier point, en procédant par double implication.

Sens direct : supposons que f est convexe. Soit x,z € I tels que x < z. Montrons que f'(x) < f'(z). Soit y un point
quelconque de ]x,z [ Comme f est convexe, on déduit de I'inégalité des pentes :

fO) —fx) _ f@) - fx)
—

y—x X

<

Comme f est dérivable en x, on peut passer a la limite quand y tend vers x (en laissant x, z fixés). On obtient

flix) < M Or, par I'inégalité des pentes, on a aussi
Z—x

@)= 10) _ £~ )

z—x =Yy

f()

< f'(z). Ainsi,
X

Et en passant a la limite quand y tend vers z (en laissant x, z fixés), on obtient —

fz)
z

f(2) —f(x)

I—X

fllx) < <f(z) donc  f(x)<f(2)

Par arbitraire sur x, z, on en déduit que f’ est croissante.



Remarque. La preuve du sens direct ci-dessus montre en particulier que si f est convexe et dérivable, alors

Vx,z€l x<z = (f/(X)SMSf/(Z)>

—X

| Corollaire 16.12 |

Soit f : I — R une fonction deux fois dérivable.
e fest convexe si et seulement si f” > 0.

e f est concave si et seulement si f” < 0.

Ceci permet de justifier facilement les Exemples 1 et 3.

2.2 Position par rapport a la tangente

| Théoreme16.13 |

Soit f : I — R une fonction dérivable.

e Si f est convexe, alors pour tout a € I, 1a courbe ‘Kf est au-dessus de sa tangenteen a :
Vxel  f(x) > f'(a)(x—a)+ f(a)
e Si f est concave, alors pour tout a € /, la courbe ¢ est en-dessous de sa tangente en a :

Vxel  f(x) < fl(a)(x—a)+f(a)
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Convexité

Démonstration. On ne prouve que le premier point. Soita € /.

e Soit x > a. comme f est convexe et dérivable sur [a,x] , par la Remarque sous la preuve du Théoreme 16.11,
on en déduit que

L > f'(a)  ouencore  f(x)> f'(a)(x—a)+ f(a)

X

S

e Soitx < a. De méme en appliquant la Remarque sur [x,a], on en déduit que

MO =10 ¢ oy ouencore  f(x) > f(a)(x—a) + f(a)
a—x
Dans tous les cas, on a donc I'inégalité voulue. O

Exemple 6. Montrer que pour toutx € R,onae* > 1+ux.

3 Sécante

| Définition 16.14 |

i Soit f : I — R une fonction. On appelle sécante de ¢ toute droite qui passe par deux points distincts de |
L% !

Dit autrement, pour tous a,b € I distincts, si on note A le point de coordonnées (a, f(a)) et B le point de
coordonéees (b, f(b)), alors la droite (AB) est une sécante de €.

| Théoréme 16.15 |

Soit f : I — R une fonction convexe et a,b € [ avec a < b.
e Sur [a,b],la courbe € est en-dessous de la sécante (AB).

° Sur] — oo, a] U [b, +o0 [, la courbe % est au-dessus de la sécante (AB).

Le premier point est un résultat déja connu car, sur [a, b] , la sécante (AB) coincide avec la corde [AB] .
Bien entendu, ce résultat s’adapte aux fonctions concaves : si f est concave, la courbe 6 est au-dessus de la
sécante (AB) sur [a,b], mais en-dessous de la sécante (AB) sur | —eo,a| U [b, +oo].
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Convexité

4 Méthodes pour les exercices

Les méthodes sont présentées dans le cas d'une fonction convexe, mais s’adaptent au cas d'une fonction concave.

| Méthode |

Pour montrer qu’'une fonction f est convexe, on peut :

e Si f est deux fois dérivable, montrer que f” est positive.
e Si f est dérivable, montrer que f est croissante.
e Sinon, utiliser la définition.

Fausse Bonne Idée : éviter de montrer que 7, est croissante ou que f vérifie I'inégalité des pentes.

| Méthode |

Pour montrer des inégalités du type f(x) et une expression affine ax+ 3 :

e Sil'inégalité est de la forme f(x) > ax+ B avec f convexe, on peut regarder si y = ax + f3 est
I'équation d'une tangente de %7.

e Sil'inégalité est de la forme f(x) < ax-+ 3 avec f convexe, on peut regarder si y = ox + f3 est
I'équation d’'une corde de ¢y, notamment si cette inégalité n’est demandée que pour tout x dans un
segment [a,b].

Le second point peut également s’adapter pour une inégalité du type f(x) > ax+ 3 en dehors du segement
[a, b} , au moyen d’une sécante, mais son cas d’utilisation est plus rare.

| Méthode |

Pour montrer une inégalité faisant intervenir » points x1, - - - , x,,, il faut le plus souvent utiliser 'inégalité
de Jensen. Le plus difficile est de trouver la bonne fonction f et les points yy,-- - ,y, en lesquels il faut

I'appliquer. On peut avoir y; # x;, par exemple y, = — comme a I'Exemple 5!
Xk

Conseil : partir de I'inégalité a montrer et raisonner par équivalences / réécritures jusqu’a reconnaitre un
n n
terme de la forme f | — ) yi | et/ou— Y f(yx), ce qui nous guide vers la bonne fonction f ou les bons
=1 =
réels Yi," s Yn-
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